Tablas Matemáticas de David: Derivada de xn ![]() |
(Matemática | Cálculo | Derivadas | Tabla de | xn) |
![]()
|
Demostración de xn
: desde
e(n ln x)
Dando:
ex = ex;
ln(x) = 1/x; La Regla de la cadena.
Resuelva:
xn =
e(n ln x)
=eu
(n ln x) (Fije u = n ln x)
= [e(n ln x)] [n/x] = x^n n/x = n x(n-1) Q.E.D.
Demostración de xn
: desde la Integral
Given: xn dx = x(n+1)/(n+1) + c;
El Teorema Fundamental de Cálculo.
Resuelva:
x(n-1) dx = xn / n
xn / n =
x(n-1) dx = x(n-1)
1/nxn = x(n-1)
xn = n x(n-1) Q.E.D.
Demostración de xn
: algebraico
Dando: (a+b)n = (n, 0) an b0 + (n, 1) a(n-1) b1 + (n, 2)
a(n-2) b2 + .. + (n, n) a0 bn
Aquí (n,k) es el coeficiente binómio = n! / ( k! (n-k)! )
Resuelva:
xn = lim(d->0) ((x+d)n - xn)/d
= lim [ xn + (n, 1) x(n-1) d + (n, 2) x(n-2) d2 + .. + x0 dn - xn ] / d
= lim [ (n,1) x(n-1) d + (n, 2) x(n-2) d2 + .. + x0 dn ] / d
= lim (n,1) x(n-1) + (n, 2) x(n-2) d + (n, 3) x(n-3) d2 + .. + x0 dn
= lim (n, 1) x(n-1) (todos los téminos derechos se cancelan a causa de el factor d)
= lim (n, 1) x(n-1) = n! / ( 1! (n-1)! ) x(n-1) = n x(n-1) Q.E.D.